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Abstract—We build personalized relevance parameterization method (PReP-AD) based on artificial intelligence (AI) techniques to
compute Alzheimer’s disease (AD) progression for patients at mild cognitive impairment (MCI) stage. Expressions of AD related genes,
mini mental state examination (MMSE) scores and hippocampal volume measurements of MCI patients are obtained from Alzheimer‘s
Disease Neuroimaging Initiative (ADNI) database. In evaluation of cognitive changes under pharmacological therapies, patients are
grouped based on available clinical measurements and the type of therapy administered, namely donepezil monotherapy and
polytherapy of donepezil with memantine. Average leave one out cross validation (LOOCV) error rates are calculated for PReP-AD

results as less than 8% when MMSE scores are used to compute disease progression for a 60 month period, and 3% with hippocampal
volume measurements for 12 months. Statistical significance is calculated as p = 0.003 for using AD related genes in disease
progression and as p < 0.05 for the results computed by PReP-AD. These relatively small average LOOCV errors and p-values suggest
that our PReP-AD methods employing gene expressions, MMSE scores and hippocampal volume loss measurements can be useful in
supporting pharmacologic therapy decisions during early stages of AD.

Index Terms—Alzheimer’s disease, mild cognitive impairment, AD biomarkers, gene expressions, cholinesterase inhibitors, donepezil,
memantine, hippocampal volume loss, mini mental state examination, MMSE scores, artificial intelligence
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1 INTRODUCTION

A LZHEIMER’S disease (AD) is a dementia type neurodegen-
erative disorder associated with cognitive impairment, alter-

ations in functional abilities and progressive brain tissue changes
such as hippocampal volume loss [1], [2]. AD progression is
also characterized with a number of histopathological findings,
specifically the presence of extracellular amyloid plaques and
intraneuronal neurofibrillary tangles causing loss of functional
connectivity between distinct brain regions [3], [4]. Transition
period from normal cognition to AD is called mild cognitive
impairment (MCI) stage during which initial symptoms of AD such
as short-term memory loss due to a decline in cognitive functions
can be observed [5], [6].

To slow down cognitive decline caused by glutamatergic
and cholinergic signalling impairments, US Food and Drug
Administration (FDA) approved a number of drugs for pharmaco-
logic therapies [7]. For example, cholinesterase inhibitors (ChEI)
such as donepezil, galantamine and rivastigmine decelerate disease
progression for mild to moderate stages, while memantine, an N-
methyl-D-aspartate (NMDA) receptor antagonist, targets glutamate
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for patients with moderate to severe disease [8], [9]. A polytherapy
of donepezil and memantine can also be administered to patients
in mild to severe stages [7], [10]. However, late administration
of pharmacologic therapies in the course of neuropathological
processes decrease the effectiveness of therapies [11]. To stabilize
cognitive and functional deterioration for elderly individuals with
AD symptoms, treatments applied at earlier stages of the disease
(e.g., MCI) is crucially important [12].

For diagnosis of AD and drug efficacy analysis, cognitive
impairment is measured with a number of assessment tools [13].
A 30-point questionnaire, called Mini-Mental State Examination
(MMSE), is widely used to assess disease symptoms including
disorientation, loss of memory and attention, and eroded language
abilities [14], [15]. The decline in learning and memory skills
is also associated with a volume atrophy in hippocampus, where
neurofibrillary tangle formation begins at early stages of AD [6],
[16]. Repeated 3D magnetic resonance imaging (MRI) scans of
whole brain recorded for tracing the rate of hippocampal volume
loss can also assess disease progression [17].

The most well-characterized and validated protein biomarkers
of AD, Aβ1−42 (42 aminoacid form of β -amyloid plaques) and tau
proteins (t-tau and its phosphorylated form p-tau), are indicators
of tangle formations in cerebrospinal fluid (CSF) [2]. However,
the invasive nature of obtaining CSF (i.e., lumbar puncture) limits
the repeated use of these biomarkers [18]. To identify biological
pathways associated with AD, alterations of gene expressions
and their complex interactions are studied with gene expression
profiling [11], [19]. Blood-based biomarkers are also identified to
evaluate the levels of Aβ1−42 and tau proteins [15].
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Impact of protein biomarkers, such as ApoE ε4 alleles, on AD

advancement is studied using information from clinical measure-
ments of a number of research studies [2], [20]. Clinical measure-
ments are used to design linear and non-linear models [13], [21]
and curve fitting functions [22] to study the cognitive decline. In
addition, therapy effects on AD and the interactions among AD

drugs are examined to explore their underlying mechanisms [7],
[10], [23]. In this paper, we analyze effect of gene expressions
(obtained from blood-based biomarkers) and their correlations on
AD progression at early stages of the disease under different drug
therapies. We build our personalized relevance parameterization
(PReP-AD) methods based on artificial intelligence (AI) techniques
from our earlier research [24], [25] to compute impact of genes on
cognitive decline. Our contribution to AD research aims to provide
support for clinical decision makers in their therapy decisions. Our
methods may help a clinician either to postpone administration
of a drug therapy if a stable progression is expected for an
MCI patient, or schedule and select drug regimen if worsening
conditions are expected.

For a number of AD patients in MCI stage, we make use of
expressions of a set of genes reported to be related to AD in
literature [2], [15], [16], [19], MMSE scores and hippocampal vol-
ume measurements stored in Alzheimer‘s Disease Neuroimaging
Initiative (ADNI) database [26]. We compute the impact of individ-
ual genes on AD advancement to parameterize disease progression
by implementing an algorithm based on differential evolution
(DE), a well-known evolutionary algorithm in AI, where a pop-
ulation of coefficient arrays comprising information for the gene
impact on AD are evolved through a number of generations to
converge to their fittest values over a multi-dimensional space.
We introduce two methods, PReP-AD-MMSE employing MMSE

scores and PReP-AD-HVL which uses hippocampal volume loss
measurements in computation of progression parameters. To as-
sess cognitive changes for MCI patients over time, we classify
the patients into six groups based on their clinical measurements
recorded in ADNI and the type of therapy they received. Patients
given donepezil monotherapy, and polytherapy of donepezil with
memantine are in MMSE-MONO and MMSE-POLY groups, respec-
tively, whereas patients with no drug therapy but with MMSE

scores are placed in MMSE-NT group. Similarly, HVL-NT, HVL-
MONO and HVL-POLY groups are defined for the patients with hip-
pocampal volume measurements. The patients with MMSE scores
and volume measurements but have not received any therapy are
assigned to both MMSE-NT and HVL-NT groups, and it is likewise
for the patients in the therapy groups.

Our PReP-AD-MMSE method utilizes MMSE scores and AD

gene expressions to compute the progression parameters, while
hippocampal volumes are used with the expressions of AD genes
for PReP-AD-HVL. We implement a validation algorithm using
leave-one-out-cross-validation (LOOCV) technique [27] to calcu-
late the error rates of the disease progression computed by PReP-
AD-MMSE and PReP-AD-HVL methods. For a 60-month period,
PReP-AD-MMSE computes parameters with an average LOOCV

error rate of 4.8% for MMSE-NT, while average errors are obtained
as 6.24% for MMSE-MONO, and 7.75% for MMSE-POLY. The
errors for PReP-AD-HVL computed parameters are 1.63% for HVL-
NT, 2.66% for HVL-MONO and 2.83% for HVL-POLY, for a 12
month period. Cumulative distributions of LOOCV error rates for
both PReP-AD-MMSE and PReP-AD-HVL methods indicate high
probabilities of obtaining small error rates.

We calculate a p-value for each of the six patient groups,
where expressions of randomly selected genes are used in the
null hypothesis, as opposed to using AD related gene expres-
sions, as the inputs to PREP-AD. The p-values calculated for six
patient groups are all smaller than 0.05. In addition, we build
cliques [28] for gene expressions to evaluate statistical significance
of correlation among the 51 AD related genes. A clique is defined
as a set of genes whose pairwise correlations are larger than a
threshold value that is determined based on experimental results.
p-value is calculated as 0.003 using the correlations of genes
randomly selected from a pool of 20,062 genes. We observe that
having a larger average clique size for AD genes results in a
smaller number of cliques. Relatively small averages for LOOCV

errors and p-values suggest that our PReP-AD methods employing
gene expressions, MMSE scores and hippocampal volume loss
measurements can be useful in supporting pharmacologic therapy
decisions during early stages of AD.

In the initial phases of our research [29], [30], we computed
disease progression based on gene expressions for patients with
MMSE scores, hippocampal volumes, with or without pharma-
cologic therapy. In this paper, we first extend our research on
pharmacological therapies by using hippocampal volume losses.
PReP-HVL-MONO and PReP-HVL-POLY methods are built as ex-
tensions of the initial four PReP methods. In addition, we repeat
the computation process for several re-sampled AD related gene
pools to evaluate the change in error rates as the number of genes
increases. We analyze the error rate trend for the re-sampled AD

patient pools. We make a comprehensive analysis of our overall
findings on computational methods for AD.

The rest of this article is organized as follows. In Sec. 2 out-
lines related work reported in literature. MMSE and hippocampal
volume loss measurements, pharmacologic therapy effects and AD

related genes are in Sec. 3. Our algorithms for PReP-AD methods
are presented in Sec. 4. Analytical results and errors are in Sec. 5.
Statistical significance of using AD related genes is in Sec. 6. A
brief discussion and evaluation of the results are in Sec. 7.

2 RELATED WORK

AD is a neurodegenerative disease characterized by the formation
of amyloid beta plaques and neurofibrillary tangles [1], [2], [3],
[4]. A decrease in Aβ1−42 and an increase in t-tau and p-tau pro-
teins measured in CSF are reported as molecular-based biomarkers
for AD [18].ApoE allele ε4 gene, which is associated with a late
onset of AD, is also widely accepted as a genetic risk factor [20].As
an alternative blood-based biomarkers and patterns in microarray
data are analyzed for obtaining gene expressions [15], [19].

In a comprehensive review [1], 68 clinical rating scales were
identified to measure domains of AD including cognition, be-
havior, and quality of life. In assessment of the cognitive stage
of a patient (e.g., memory recall and orientation to space and
time), MMSE is the most common rating tool, which is a 30-
point test requiring 5 to 10 minutes to complete [14].A quadratic
and logarithmic curve fitting method [22], a trilinear model [21],
and a model with nonlinear functions [13] are introduced in
literature to evaluate disease progression based on MMSE scores.
In many studies, analysis of AD patients with volumetric MRI has
shown consistently greater hippocampal atrophy rates compared
to aging control patients [31]. A functional connectivity between
hippocampus and a set of disrupted brain regions for AD patients
is reported in [32]. In [2], analyzing its relationship with protein
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biomarkers, hippocampal volume loss is reported as an indicator
of AD pathology and a marker for efficient therapy interventions.

The effect of donepezil, a popular ChEI drug, on social
functioning is studied in [23] by evaluating ratings graded based
on caregiving time and stress. In [10], researchers investigate the
benefits of initiating a memantine therapy for the patients with
moderate to severe disease and currently under treatment with
donepezil. ChEI and memantine polytherapy is reported as safe
and well tolerated based on clinical observations [7]. Therapies
administered during early stages of AD, when they are the most
effective in slowing cognitive decline, are discussed in [5], [33].

In our research, we develop AI based methods to compute pro-
gression of cancer and neurodegenerative diseases using clinical
biomarkers such as gene expressions and morphological features
of pathology samples. In [34], tumor growth parameters are
computed for breast cancer patients using their gene expressions
and MRI scans. We study the growth delay and shrinkage effect
of anti-cancer compounds on breast cancer cell lines implanted
in xenograft mice models in [35], [36]. In [25], [37], to evaluate
kidney cancer tumor growth behavior, we compute morphological
features of tumor specimen extracted from xenograft mice models
using spatial pattern analysis and Voronoi tessellations. In this pa-
per, we compute progression of AD using gene expressions, MMSE

scores and hippocampal volume measurements of MCI patients to
provide insight for building effective treatment strategies at the
early stages of AD.

3 ALZHEIMER’S DISEASE

Concern over AD continues to deepen, as it has been forecasted
that the prevalence of the disease will only increase, with a
predicted 1 in 85 persons worldwide living with AD by 2050 [38].
In response to this prediction of dramatic increase, there has
been pressure to find better indicators to improve understanding
of the disease and to evaluate prospective treatments. Current
neuropsychological tests used to monitor the disease and evaluate
their efficacy have several limitations [5]. They have a poor test-
retest reliability with intraclass correlation coefficients of 0.5 to
0.8 as opposed to being very close to 1. They are often unable to
distinguish between treatments that modify the disease progression
and the ones that treat only the symptoms (e.g., drugs that enhance
cognition without treating neurodegenerative process).

ADNI [26] is a longitudinal multisite study combining genetic
information with clinical measurements to find better disease
indicators. ADNI1, ADNI GO and ADNI2 are the three phases of the
study. During each phase, the disease advancement is tracked over
time for hundreds of participants who are recruited across North
America. The research data is then shared through USC Image and
Data Archive repository (IDA) to assist research studies. IDA also
provides data from several other dementia studies such as DOD-
ADNI conducted to study the effects of traumatic brain injury and
post-traumatic stress disorder on AD, and AIBL study (Australian
Imaging Biomarkers and Lifestyle Study of Aging).

The initial phase ADNI1 supports researchers with MRI and
PET data, and clinical cognitive and biomarker data for the devel-
opment of novel methods. The data in the repository is helpful to
describe longitudinal changes in brain structure and metabolism.
Second phase ADNI GO and third phase ADNI2 are providing
clinical measurements and 3-T MRI data from newly enrolled and
follow-up patients from ADNI1. In addition, the blood samples
(for DNA and RNA extraction) and CSF biomarkers are collected

to extract genetic and biochemical information. Within three
phases, ADNI helps to determine the relationships among clinical
and genetic biomarker characteristics as the disease pathology
evolves [39]. For up-to-date information, see www.adni-info.org.

3.1 Clinical Measurements
MMSE is a widely used scale designed to assess cognitive items
correlating with underlying neuropathology of AD [22]. To mea-
sure cognitive functions such as memory recall and orientation
skills to time and space, a 30-point MMSE test with 11 questions
in 7 different categories is given to patients [14]. Using MMSE

scores collected at distinct time points, patients can be classified
as having normal cognition, and mild and severe cognitive impair-
ment.In addition, assessing the rate of change in MMSE over time
at regular intervals, patterns of progression can be monitored [13].

Hippocampal volume can be an effective metric for diagnos-
ing AD and predicting the disease progression [31]. The ADNI

database records hippocampal volume measurements of AD pa-
tients for early and late MCI patients, as well as control patients.
3-Tesla MRI scanners have been used to produce high resolution
baseline and follow-up MRI scans. To exemplify MRI imaging
process in ADNI, we present sample MRI images in Fig. 1 for
a female patient where the shrinkage in hippocampus volume and
expansion of the ventricular cavity in the brain from ages 74 to
81 are discernible. The rate of change in hippocampal volume
between visits is used as a metric for disease progression.

3.2 Pharmacologic Therapies
Activity of acetylcholinesterase (AChE) enzyme lowered levels of
acetylcholine, a chemical acting as a neurotransmitter at the nerve
endings and across synapses in the central nervous system [41].
Cholinesterase inhibitors (ChEI) donepezil, galantamine and ri-
vastigmine are administered to AD patients to prevent breakdown
of acetylcholine. The neurotransmitter glutamate is related to
learning and memory processes by stimulating NMDA recep-
tors [42]. Memantine, an NMDA receptor antagonist, addresses
dysfunction in glutamatergic transmission and used especially for
the patients with severe disease [8]. Efficacy of memantine and
ChEI monotherapy in AD treatment has been widely studied [8],
[41], [43]. It is also clinically observed that a polytherapy of ChEI

donepezil and memantine is beneficial due to their complementary
mechanisms [7]. Predicting drug therapy response for AD patients
improves the cost-effectiveness of pharmacologic therapies [33].

In our study, we define six patient groups based on clinical
measurements and the therapy administered. MMSE-MONO and
MMSE-POLY groups include patients given donepezil monother-
apy, and polytherapy of donepezil with memantine, respectively.
The patients receiving no drug therapy are put into MMSE-NT.
All patients in these three groups have also their MMSE scores.
Similarly, HVL-NT, HVL-MONO and HVL-POLY groups are defined
for the patients with hippocampal volume measurements. There
are overlaps among the groups since the patients with both
measurements are registered for both MMSE and HVL groups. For
example, 87 patients are in both MMSE-NT and HVL-NT groups.

3.3 Alzheimer’s Disease Related Genes
Table 1 lists the genes with their Human Genome Organisation
(HUGO) symbol names that are reported in the literature to be
related to AD [2], [15], [16], [19]. In our computations, we use
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Fig. 1: MRI brain scan of a female MCI patient (ID:
023-S-0887). The skull has been digitally removed and
the hippocampus volume has been isolated using the FSL
library. The top row has images from the baseline scan
(aged 74), whereas the bottom row includes the latest
recorded scan (aged 81). From left to right, the figure
shows the axial, coronal, and sagittal views of the brain,
where hippocampus regions are highlighted in green and
blue. (In this paper, brain images are presented using
FreeView application of FreeSurfer [40].)

the mean values of the expressions for the genes either belonging
to the same family or encoding a member of the same family of
protein molecules such as enzymes and receptors. For example, we
take into account the mean values of expressions for ACSF2 and
ACSF3, which encode a member of Acyl-CoA synthetase family of
enzymes. Note that, for simplicity, we use the term gene to refer
either to a gene or gene family in the remainder of this paper.

TABLE 1: HUGO SYMBOLS OF AD RELATED GENES

58 genes reported in [15]

ACSF2 CSF1R EGFR LEPROTL1 PDGFD TNFAIP8
ACSF3 CSF2 HBEGF MEGF6 PDGFRA TNFAIP8L1
ADIPOQ CSF2RA ICAM1 MEGF8 PDGFRB TNFAIP8L2
ADIPOR1 CSF2RB LEP MEGF9 PDGFRL TNFAIP8L3
ADIPOR2 CSF3 LEPR MEGF10 SELPLG VEGFA
APP CSF3R LEPRE1 MEGF11 TF VEGFB
BDNF EGFL6 LEPREL1 OLR1 TNFAIP1 VEGFC
CCL5 EGFL7 LEPREL2 PDGFA TNFAIP2 VWF
CCL22 EGFL8 LEPREL4 PDGFB TNFAIP3
CSF1 EGFLAM LEPROT PDGFC TNFAIP6

33 genes reported in [19]

ADD3 CHN2 EEF1A1 INHBB PCSK1N RAP1GDS1
AGT CLU GSTM2 KRT8 PLEKHB1 RPL31
APLP1 CLUH GSTM2P1 LIMS2 PLP1 TSPAN3
C4BPA CLUL1 HBB LRRC4B PRDX1
C4BPB DMPK HBG2 MT1G PTS
CD81 DTNA IGHMBP2 OSBPL3 RANGAP1

ApoE (tau activator) and MAPT (microtubule-associated tau) are reported in [2]

SOD1, SOD2 and SOD3 are reported in [16]

4 PREP-AD METHOD

In our research, we have studied the effect of gene expressions on
predicting tumor mass proliferation. For example, for breast can-
cer patients, we compute exponential-linear model tumor growth
parameters [34], and examined tumor shrinkage and growth delay
effects of anti-cancer drugs [35], [36]. In this paper, we build
our personalized relevance parameterization methods, namely
PReP-AD-MMSE using MMSE scores and PReP-AD-HVL based
on hippocampal volume loss measurements. Both methods aim
to compute AD advancement to make pharmacological therapy
analysis at the early stages of AD.

Deterministic methods are useful to solve problems defined in
a multi-dimensional space if the algorithm running time does not
exceed a polynomial bound. On the other hand, many well-known
evolutionary algorithms in AI converge to the fittest candidate
solution within specific constraints in typically low-cost tractable
time by means of evolutionary mechanisms such as selection,
cross-over and mutation. In this paper, our goal is to bring an
efficient approach to compute AD progression based on gene
expressions at early stages of the disease. Size of the solution

space for this problem grows with a relatively large number of
disease related genes (as presented in Sec. 3.3). For this reason,
we implement a DE based evolutionary method to compute in
polynomial time the parameters reflecting AD advancement and
the pharmacological therapy effects. To identify individual gene
impact on AD progress, our algorithm explores and exploits
the solution space using pre-determined cross-over and mutation
parameters and converges to the fittest weight coefficient array.

In Figure 2, we outline PReP-AD workflow. The shapes marked
in blue are only for PReP-AD-HVL, green lines are for PReP-AD-
MMSE, and orange shapes are for both methods. Set M is defined
for the patients with MMSE scores, V is for those with volume
measurements, V is for patients without volumes, and set H =
V ∪V , where V ∩V = /0, M∩H 6= /0. nM is the number of patients
in set M, and nH and nV are likewise.

In our workflow, the experimental data; MMSE scores of the
patients from set M and volume measurements of set V patients,
are processed to calculate progression parameters (gray box on
the left pane). As shown in mid pane, Algorithm 2 computes
parameters for set H patients using HVL parameters of set V
patients and gene expressions of set H patients. HVL parameters
of set H and MMSE parameters of set M patients are input to
Algorithm 3 together with their gene expressions. Algorithm 1
computes the genetic accordance matrix for the training set of
patients using their parameters and gene expressions and Algo-
rithm 3 computes the parameters and LOOCV errors for the test
patient. This procedure, shown in the box on the right pane, is
repeated for all patients.

Note that the MMSE scores and volume measurements record-
ed during the MCI stage of the disease for all patients are used
to calculate the progression parameters. The training progression
parameter dataset is then used in PReP-AD algorithms which are
implemented based on AI methods to compute disease progression
for new patients and the corresponding error rates.

4.1 Genetic Data Vector
We construct genetic data matrix Θ for both PReP-AD methods,
using expressions of AD related genes and their correlations from
all MCI patients. Genetic data vector Θβu , which is a column vector
of matrix Θ, can be stated for a patient βu as

Θβu =< c,e(g1), · · · ,e(gr),θ1, ...,θs > (1)

where e(gi) is the expression of gene gi, θk is the kth correlation
parameter, for integers i ∈ [1 r] and k ∈ [1 s]. The bias term, c,
is a constant to fit a training data into the equation set of many
optimization and learning algorithms (e.g., perceptron, gradient
descent, and others) with a smaller mean squared error rate [44].

To compute the correlation parameter θk, we built an n x r di-
mensional E matrix using expressions for r AD related genes from



1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2870363, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 2: Progression parameter computation flowchart (blue labelled lines and boxes are for PReP-AD-HVL, green is for PReP-AD-MMSE, orange is for both)

n MCI patients. The ith column vector Ei consists of expression
values e(gi) from n patients. The correlated gene set Ck, which is
used to calculate parameter θk, can be expressed as

Ck = {gi ∈ G : C(Ei,E j)≥ τ, ∀g j ∈ Ck\gi} (2)

where G is the set of genes, C(Ei,E j) is the correlation between
genes gi and g j, and τ is the threshold parameter, and correlated
gene set Ck is a unique set. As an example, let us suppose that,
for a sample gene set of Gsample = {g1, . . . ,g10}, only the pair-
wise correlations of C(E1,E3), C(E1,E5), C(E1,E6), C(E1,E10),
C(E5,E10), and C(E6,E10) are greater than τ . Then, the correla-
tion sets are calculated as C1 = {g1,g3}, C2 = {g1,g5,g10}, and
C3 = {g1,g6,g10}. Note that the set C= {g1,g3,g5} does not exist
since C(E3,E5) < τ . Once all correlation sets are calculated, the
correlation parameter θk can be computed as

θk = ∏
gi∈Ck

e(gi) (3)

In this study, the size of all Ck are set to 2 since the correlation
parameters θk calculated for larger sets are negligible when the
threshold τ is small (e.g., 0.1). For example, a set consisting
of four genes, each with an expression value of 0.01, gener-
ates a correlation parameter of 10−8. For this purpose, pairwise
correlations are calculated for sets with more than two genes.
For the above example, instead of set C2 = {g1,g5,g10}, we
prefer to define three sets as C2 = {g1,g5}, C3 = {g1,g10}, and
C4 = {g5,g10}. The threshold constant τ is determined to limit the
number of correlation parameters within a predetermined range.
By experimenting with many runs, the threshold values giving the
most related results are identified: τ = 0.7 was used in PReP-AD-
MMSE method, whereas τ = 0.6 for PReP-AD-HVL.

After genetic data vector Θβu is built for patient βu, we
compute progression parameters as follows

Pβu = AAD ·Θβu (4)

In Eq. (4), AAD =
[
ai j
]

is the µ ×m dimensional genetic accor-
dance matrix, where µ is the number of progression parameters
and m is the number of elements of genetic data vector Θβu . The
relationship between parameters can be expressed as m= r+s+1.
In our study, to calculate LOOCV errors for all patient, we exclude
one test patient at each iteration and build PReP-AD method by
making use of gene expressions and clinical information from
the remaining patients (i.e., training set). This process generates
as number of patients as many methods for each group. The m
parameters that we calculate for all patients vary from 52 to 58,
and smaller than the size of the the training sets. This results in an
overdetermined system of equations at each iteration. In Table 2,
we present the number of patients for the given m values computed
by PReP-AD for six patient groups. For example, m = 53 for 112
patients and m= 54 for the remaining 3, all from MMSE-NT group.

TABLE 2: The number of patients from six patient groups for the
given m values computed by PReP-AD methods

Computed m-value

52 53 54 55 56 57 58

Patient Group Number of Patients

MMSE-NT - 112 3 - - - -
MMSE-MONO - - 1 14 38 28 -
MMSE-POLY 2 11 50 7 - - -
HVL-NT - - - 2 170 2 1
HVL-MONO - - 7 50 20 3 -
HVL-POLY 1 64 - - - - -

A linear decline is reported in disease level of AD patients as
time progresses during MCI stage [13], [21]. For both PReP-AD

methods, we compute linear decline parameters in MMSE scores
and hippocampus volume measurements for the MCI patients
whose gene expressions and clinical measurements are available
in ADNI database. Vector Pβu can be stated using the progression
parameters from patient βu as follows

Pβu =< p1,u,p2,u, · · · ,pµ,u > (5)

where pν ,u is the ν th parameter and integer ν ∈ [1 µ].

4.2 Genetic Accordance Matrix for AD
Genetic accordance matrix AAD is defined to identify the effects
of gene expressions and their correlations on progression of AD.
Using genetic information from n MCI patients, each row vector
of matrix AAD can be computed separately as

A
ν

AD = P̃ν ·
[

C
ΘD

]−1

(6)

where C is a row vector with a bias term c for n patients and
ΘD is the reduced form of genetic data matrix Θ. P̃ν contains
progression parameters from n patients

P̃ν = (p̃ν ,1, p̃ν ,2, · · · , p̃ν ,n) (7)

where p̃ν ,u is the estimated value of the ν th progression parameter
for patient βu.

In this paper, we compute six different genetic accordance ma-
trices, one for each patient group as defined in Sec. 3.2. Utilizing
AI techniques from our earlier research [24], [25], we implement
differential evolution (DE) (as shown in Algorithm 1) to generate
the genetic accordance matrix. Inputs of Algorithm 1 include
genetic data matrix Θ and progression parameter matrix P for n
MCI patients. Elements of P are the rates of change in disease level
and calculated by using MMSE scores and hippocampus volume
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measurements which are collected multiple times at distinct time
points. The output is a coefficient vector of the genetic accordance
matrix.

In lines 2 to 21 of Algorithm 1, a row vector Aν

AD of matrix
AAD is computed. An initial population of candidate vectors

#»
A 1 is

Algorithm 1 Computation of genetic accordance matrix based on
gene expressions, MMSE scores and hippocampal volumes

Require: genetic data matrix Θ, progression parameter matrix P
Ensure: coefficients of genetic accordance matrix AAD

1: Start
2: for all progression parameter pν do
3: random declaration of initial population

#»
A 1;

4: compute initial fitness array F(
#»
A 1);

5:
#»
A ν ,best ←

#»
A 1; //initialize best pop.

6: F(
#»
A ν ,best) ← F(

#»
A 1);

7: for all generation σ do
8: evolve crossover population

#»
A σ from

#»
A ν ,best ;

9: for all candidate i do
10: for all patient βu do
11: compute parameter p̃ν ,u using Θβu ;
12: end for
13: compute fitness F(

#»
A σ

i ) of candidate vector;
14: if F(

#»
A σ

i ) < F(
#»
A i

ν ,best) then
15:

#»
A i

ν ,best ←
#»
A σ

i ; //update best pop.

16: and F(
#»
A i

ν ,best) ← F(
#»
A σ

i );
17: end if
18: end for
19: end for
20: compute Aν

AD from
#»
A ν ,best ; //fittest vector

21: end for
22: construct AAD matrix using Aν

AD row vectors;
23: End

instantiated and the fitness of individuals are calculated as shown
at lines 3 and 4. The candidates of initial population are generated
randomly as DE based computation does not require an initial
knowledge to track the solution space [45]. In lines 5 and 6, the
fittest candidate array

#»
A ν ,best and the corresponding fitness array

F(
#»
A ν ,best) are initialized. In DE-based computation, a thorough

search is applied in global solution space with the exploration
feature of DE, whereas the local region around the current fittest
solution is examined with its exploitation feature [45]. Initial
population is evolved generation by generation (lines 7 to 19),
where, at each generation, crossover population

#»
A σ is calculated

from the current best vector population
#»
A ν ,best . An individual

candidate vector
#»
A σ

` is computed as

#»
A σ

` =

{ #»
A i

ν ,best + f · ( #»
A j

ν ,best −
#»
A k

ν ,best) if rand ≤ CR
#»
A `

ν ,best + ε otherwise
(8)

where i, j and k are randomly selected unique vector indices, f ∈
[0 1] is the scaling factor, CR is the cross-over rate, rand ∈ [0 1] is a
random number, and ε ≈ 0 is defined to exploit the neighborhood
of the current best solution. In Fig. 3, the calculation of vector
#»
A σ

` is represented in a 3-D space for rand ≤ CR case.
To compute fitness of candidate vectors, progression parame-

ters are computed for each patient βu in lines 10 to 12. At line
13, the fitness of the candidate solution F(

#»
A σ

i ) is computed
using square differences of estimated and measured progression

Fig. 3: A sample 3D representation for evolution of a cross-
over candidate vector A σ

` at generation σ using three randomly
selected distinct vectors from generation σ −1

parameters, p̃ν ,u and pν ,u, respectively, for each patient βu. The
fitness function can be formulated as

F(
#»
A σ

i ) =
1
n
·

√
n

∑
u=1

(
pν ,u− p̃ν ,u
pν ,u

)2

(9)

Here, to decrease variation among error rates, we inversely weight
the least square differences with the magnitude of measured
progression parameter. In lines 14 to 17, each candidate vector
#»
A i

ν ,best of best population and corresponding fitness F(
#»
A i

ν ,best) are
updated. With DE based computation, the crossover population of
next generation is evolved from the current best population array
#»
A ν ,best to converge to the fittest solution. At line 20, the fittest
candidate vector of the best population is computed as

#»

Aν
AD = argmin

#»
A σ

i ∈
#»
A ν ,best

F(
#»
A σ

i ) (10)

where
#»

Aν
AD is the row vector corresponding to parameter pν .

Genetic accordance matrix AAD is constructed with row vectors
computed for each progression parameter at line 22. Using matrix
AAD in Eq. (4), parameter pν ,u of patient βu is calculated as

pν ,u = c ·aν ,0 +
r

∑
i=1

aν ,i · e(gi)+
s

∑
j=1

aν ,( j+r) ·θ j (11)

where c is the bias term, aν ,i is the ith coefficient of ν th row of
matrix AAD, e(gi) and θ j are the elements of genetic data vector
Θβu of patient βu as given in Eq. (1).

4.3 Paired Difference Method
Although gene expressions and MMSE scores were available for
most of the MCI patients in ADNI database, the hippocampal
volume measurements were not recorded for some of them. We
introduce Algorithm 2 exploiting genetic similarities among the
patients to compute the hippocampal volume loss rate for the
patients whose volume measurements were not available. Manhat-
tan distance metric [46] was used to calculate genetic similarities
among patients. The volume loss rates computed by Algorithm 2
are then input to Algorithm 1 to generate genetic accordance
matrix for PReP-AD-HVL method.

In Algorithm 2, the patients with and without hippocampal
volume measurements are placed into sets V and V , respectively.
We initialize gene expression matrix E and calculate progression
parameters using volume information of ADNI for set V patients
(the gray box in Fig. 2). Volume loss rate difference array L∆
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and gene expression difference matrix E∆ are generated in lines
7 to 12. At line 9, to generate array E i j

∆
for patients βi and

β j, the difference between expressions of gene gφ is computed
as
∣∣e(gφ ,i)− e(gφ , j)

∣∣. The rate difference L i j
∆

is computed as∣∣`ν ,i− `ν , j
∣∣ where `ν ,i and `ν , j are the loss rates for patients βi

and β j. Then, with DE based methods [25], weight coefficients
are computed for the elements of matrix E∆ (lines 14 to 22). At
line 14, we generate an initial population of weight vector #»w 1

and the fitness of initial array F( #»w 1) is computed at line 15. We
evolve a crossover population #»w σ at each generation σ from the
current best population #»wbest . The fitness is computed for #»w σ at
line 18, and each candidate #»w i, best of best population is updated
based on its fitness value F( #»w i, best) in lines 19 to 21. Here, DE

is implemented for the relationship between gene expression and
volume loss rate differences which can be formulated as

L∆ =
[

Γ | E∆

]
· #»w f it (12)

where Γ is a column vector with negative bias terms, E∆ is a(n
2

)
× r dimensional matrix for n patients and r genes. #»w f it is the

fittest weight vector and calculated as
#»w f it = argmin

#»w i, best∈ #»w best

F( #»w i, best) (13)

Finally, using the fittest weight vector #»w f it , we compute
hippocampal volume loss rates for the patients from set V (lines
24 to 33). At line 24, we randomly select a patient βu from set V .
Then, paired difference fδ (βu,βi) of gene expressions is computed
for patient βu and each patient βi from set V in lines 26 to 28 as

fδ (βu,βi) = w0 · c+
|G|

∑
φ=1

wφ · |e(gφ ,u)− e(gφ ,i)| (14)

where G is the set of AD related genes. At line 29, most genetically
similar patient βu from set V is found for patient βu as

βu = argmin
βi∈V

fδ (βu,βi) (15)

At line 30, corresponding hippocampal volume loss rate `ν ,u for
patient βu is calculated as

`ν ,u = `ν ,u·

{
[1+η · fδ (βu,βu)] if γ ≤ 0.5

[1−η · fδ (βu,βu)] otherwise
(16)

where γ ∈ [0 1] is a random number and η is the normalization
constant assigned to calculate rate `ν ,u to assure that its difference
with `ν ,u of the genetically similar patient βu is in a pre-determined
range (e.g., (1 ± 0.25) · `ν ,u). Patient βu is removed from set V at
line 31 and inserted into V at line 32. The process is repeated until
the rates are calculated for all patients in V .

4.4 Cross Validation for PReP-AD
Progression parameters are computed using hippocampal volume
measurements in Algorithms 1 and 2 for PReP-AD-HVL and with
MMSE scores in Algorithm 1 for PReP-AD-MMSE. We implement
a validation algorithm based on LOOCV method [27] to compare
the progression parameters computed by PReP-AD methods with
the clinical measurements reported in ADNI database.

In Algorithm 3, genetic data matrix Θ and progression pa-
rameter matrix P are initialized in lines 2 and 3. For a test
patient βu, genetic data vector Θβu and parameter vector Pβu are
constructed in lines 6 and 7, respectively. At line 9, using genetic
data vectors from remaining (n− 1) patients, reduced genetic

Algorithm 2 Genetic similarity based computation of hippocam-
pal volume loss rate for patients without measurements

Require: gene expressions and hippocampal volumes from ADNI

Ensure: estimated hippocampal volume loss rate
1: Start
2: //initialization
3: initialize sets V and V ;
4: initialize gene expression matrix E for MCI patients;
5: calculate parameter pν ,u for each patient βu ∈V ;
6: //construct L∆ array and E∆ matrix
7: for i = 1 to |V |−1 do
8: for j = i+1 to |V | do
9: calculate difference array E i j

∆
for gene pair;

10: calculate parameter difference L i j
∆

;
11: end for
12: end for
13: //differential evolution process
14: random declaration of initial population #»w 1;
15: compute fitness array F( #»w 1) for initial population;
16: for all generation σ do
17: evolve crossover population #»w σ from #»wbest ;
18: compute fitness array F( #»w σ ) for candidate vectors;
19: for all individual i do
20: calculate #»w i, best and F( #»w i, best);
21: end for
22: end for
23: //paired difference computation for V
24: repeat
25: get patient βu ∈V ; //random selection
26: for i = 1 to |V | do
27: calculate paired difference fδ (βu,βi) using #»w f it ;
28: end for
29: calculate patient βu ∈V genetically similar to βu;
30: calculate hippocampal loss rate `ν ,u for patient βu;
31: V ←V −{βu};
32: V ←V ∪{βu};
33: until |V |= 0
34: End

data matrix ΘR is computed as a training set. Similarly, reduced
progression parameter matrix PR of training set is computed at line
10. At line 12, using matrices ΘR and PR in Algorithm 1, genetic
accordance matrix AAD is computed for the training set patients.
Estimated parameter vector, Pest

βu
, is computed for patient βu at

line 13. At line 14, disease progression is calculated for PReP-AD-
MMSE using estimated MMSE scores or for PReP-AD-HVL method
using estimated volume measurements. In lines 16 to 18, average
LOOCV error rate ε(ti) is computed for each time point ti, which
can be formulated as

ε(ti) =
1
n
·

n

∑
u=1

∣∣∣∣∣1− ∆̃βu(ti)
∆βu(ti)

∣∣∣∣∣ (17)

In Eq. (17), for MMSE scores, ∆βu(ti) is the amount of change
at time point ti recorded in ADNI database for a patient βu with
respect to the baseline measurement. ∆̃βu(ti) is the difference
between the score computed by PReP-AD-MMSE. Similarly, for
hippocampal volume measurements, ∆βu(ti) is the change at time
point ti taken from the database (or from Algorithm 2) compared



1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2870363, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Algorithm 3 Cross validation algorithm for MCI patients

Require: prog. parameters and gene expressions from n patients
Ensure: LOOCV error rates for n patients

1: Start
2: initialization of matrix Θ with genetic data vectors;
3: initialization of matrix P with progression parameters;
4: for u = 1 to n do
5: //define for test patient βu
6: construct genetic data vector Θβu ;
7: construct parameter vector Pβu ;
8: //define for training set of patients
9: compute matrix with gene expressions: ΘR = Θ−Θβu ;

10: compute parameter vector: PR = P−Pβu ;
11: //compute disease progression
12: compute AAD matrix using ΘR and PR in Algorithm 1;
13: compute estimated vector Pest

βu
using AAD in Eq. (4);

14: compute disease progression using vector Pest
βu

;
15: end for
16: for all time point ti ∈ T do
17: calculate average LOOCV error rate ε(ti);
18: end for
19: End

to its baseline value. For this case, ∆̃βu(ti) represents the volume
difference computed by PReP-AD-HVL.

LOOCV based Algorithm 3 helps avoiding over-fitting of
results computed to the existing patient data because it assigns
a training set for each patient at each iteration for both PReP-
AD methods. The accuracy of disease progression results can be
further improved with larger number of MCI patients.

5 ANALYTICAL RESULTS

With our PReP-AD methods, we have computed disease pro-
gression for MCI patients whose gene expressions and clinical
measurements are provided in ADNI database. Six patient groups,
namely MMSE-NT, MMSE-MONO, MMSE-POLY, HVL-NT, HVL-
MONO and HVL-POLY, are defined for two PReP-AD methods
based on clinical measurements and the type of therapy adminis-
tered. The patients with MMSE scores available in ADNI are placed
in one of the three MMSE- groups based on their therapy, whereas
the patients with hippocampal volume measurements are in one
of the three HVL- groups. MMSE-NT group contains 115 patients
without drug administration, MMSE-MONO group has 81 patients
who were given monotherapy of ChEI donepezil, and MMSE-
POLY has 70 patients who received polytherapy of donepezil and
memantine. 175 patients given no therapy are in HVL-NT, whereas
HVL-MONO consists of donepezil administered 80 patients and
HVL-POLY has 65 patients under polytherapy. Note that there is
some overlap among the groups since some patients have both
MMSE scores and hippocampal volume measurements available.
87 patients are in both MMSE-NT and HVL-NT groups, while 77
patients are common for MMSE-MONO and HVL-MONO, and HVL-
POLY is a subset of MMSE-POLY.

Patients who received AD related drugs have followed a con-
sistent schedule. For MMSE-MONO and HVL-MONO, all patients
except one were administered donepezil at a daily dose of 5 to 10
mg before 36th month of the therapy (remaining one patient started
at month 60). For MMSE-POLY and HVL-POLY, all patients except

five were given donepezil with a dose of 5 to 20 mg/day starting
before month 36, and memantine with a dose of 10 to 30 mg/day
starting before 48th month. The same five patients are the outliers
for both polytherapy groups with the following therapy schedules:
one patient received memantine at a dose of 5 mg/day (too small
compared to other patients) while four started their therapy after
48th month, which is outside the timeframe of our study.

TABLE 3: Number of patients with increasing, stable, moderately
and significantly decreasing cognition computed by PReP-AD

Disease Progress MMSE-NT MMSE-MONO MMSE-POLY

Increasing 3 13 11
Stable 76 32 15
Decreasing 36 36 44

HVL-NT HVL-MONO HVL-POLY

Increasing 3 15 6
Stable 29 26 14
Decreasing 98 22 16
Significant Decr. 45 17 29

At the early stages of AD, a linear decline in disease pro-
gression has been reported in several studies [20], [21]. In this
paper, we compute the amount of linear change to reflect disease
progression during the MCI stage based on clinical measurements
from the ADNI. Since volume measurements are not recorded in
ADNI for all MCI patients, we first compute the volume based
progression parameters with Algorithm 2 for each HVL- group.
Then, genetic accordance matrix AAD is computed for all six
groups by Algorithm 1, and corresponding LOOCV error rates
by Algorithm 3. With PReP-AD-MMSE, for a 60 month period
of disease progression, we obtain an average LOOCV error rate
of 4.8% for MMSE-NT, 6.24% for MMSE-MONO, and 7.75% for
MMSE-POLY groups. PReP-AD-HVL results have error rates of
1.63%, 2.66% and 2.83% for HVL-NT, HVL-MONO and HVL-POLY

groups, respectively, for a 12 month of disease progression.

5.1 Disease Progression by PReP-AD-MMSE

PReP-AD-MMSE method computes disease progression of MCI

patients using their gene expressions and MMSE scores. For the
patients in the three MMSE- groups, either a decreasing, stable or
an increasing progress is computed in cognitive behavior, where
a stable progression is defined as a change in MMSE scores in
the range of ±2 points for a 60 month period. Table 3 lists the
number of patients for each of the disease progress categories
computed by both PReP-AD methods. We observe that, for a
larger percentage of patients from MMSE-MONO and MMSE-POLY

groups, our PReP-AD-MMSE computes a decrease in cognition
compared to the no-therapy group of MMSE-NT. This is likely
because the patients from these groups were administered therapy
as a result of an increase in their deteriorating condition. However,
PReP-AD-MMSE computes an increase in MMSE scores for some
patients under therapy (13 from MMSE-MONO, 11 from MMSE-
POLY), whereas it is stable for MMSE-NT, which may be due to a
positive response to the drug therapy.

The boxplot graphs in Fig. 4 illustrate the distribution of error
rates, where the interquartile range (IQR) is shown with a box, the
red horizontal line denoting the median value, horizontal black
lines for maximum and minimum values and red crosses for the
outliers. The distribution of LOOCV error rates for the results from
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TABLE 4: LOOCV error rate statistics for PReP-AD-MMSE results

PReP-AD-MMSE Statistics

Month 12 24 36 48 60

MMSE-NT Group

No of Patients 115 98 88 69 33
Mean 3.47 4.32 4.25 5.49 6.25
Median 2.59 2.97 3.17 4.53 5.05
Std Dev 2.82 4.28 3.83 4.55 4.28
IQR 3.05 4.89 4.32 5.37 5.11
No of Outliers 6 7 3 3 2

MMSE-MONO Group

No of Patients 78 70 62 48 27
Mean 4.28 5.46 6.99 8.40 9.62
Median 2.79 4.54 5.79 6.79 8.01
Std Dev 3.72 4.50 5.93 6.88 6.94
IQR 5.23 4.71 8.87 11.29 9.42
No of Outliers 2 3 - - -

MMSE-POLY Group

No of Patients 70 68 56 38 27
Mean 4.45 6.83 9.01 10.71 12.84
Median 3.64 4.73 8.72 10.66 11.60
Std Dev 3.69 5.58 6.63 7.81 8.67
IQR 4.22 6.55 10.72 14.04 9.42
No of Outliers 2 2 - - -

PReP-AD-MMSE in first row of Fig. 4 is for a 60 month period.
The statistics of error rates are given in Table 4, where the median,
IQR and the number of outliers correspond to the boxplot graphs.
Although error rates increase as time progresses for all patient
groups, we observe that median error rate is lower than 10%,
except for months 48 and 60 in MMSE-POLY group.

Fig. 5 presents disease progression for six selected patients
computed by PReP-AD-MMSE (shown in blue) and the correspond-
ing MMSE scores reported in ADNI database (shown in brown).
These patients are selected to represent stable and decreasing
disease progression. For example, stable group patients 114-S-
1118 and 018-S-2133 from MMSE-NT group have average error
rates of 3.34% and 8.15%, respectively. For MMSE-MONO group,
we selected patient 014-S-0563 with an average error rate of
4.84% and 003-S-1057 with 8.13%. Selected patients for MMSE-
POLY group are patient 011-S-2274 with an average error rate of
3.49% and 011-S-1080 with 8.64%.

5.2 Disease Progression by PReP-AD-HVL

Disease progression for MCI patients based on their gene expres-
sions and hippocampal volume measurements is computed with
PReP-AD-HVL method for a 12 month period. Volume measure-
ments are available for 26 of 175 patients from HVL-NT, for 17
of 80 patients from HVL-MONO, and for 24 of 65 patients from
HVL-POLY group. For the patients without hippocampal volumes
recorded in ADNI, Algorithm 2 computes the volumes based on
genetic similarities. Once the volume measurements are obtained
for all patients, Algorithms 1 and 3 compute disease progression
and the corresponding LOOCV error rates.

In Table 3, the number of patients with increasing, stable,
moderately and significantly decreasing cognition computed by
PReP-AD-HVL are listed. A stable progression is defined for a total

TABLE 5: LOOCV error rate statistics for PReP-AD-HVL results

PReP-AD-HVL Statistics

Month No Pat. Mean Median Std IQR No Out.

HVL-NT Group

6 175 0.95 0.46 1.03 0.87 21
12 175 1.63 0.91 1.81 1.50 21

HVL-MONO Group

6 80 1.65 1.18 1.67 1.58 6
12 80 2.66 2.07 2.35 2.80 4

HVL-POLY Group

6 65 1.94 1.42 1.90 1.76 4
12 65 2.83 2.47 2.31 2.46 5

hippocampal volume change of 30 mm3 or less within a 12 month
period, while a moderate decrease is smaller than 80 mm3 for the
same period. Similar to the results for MMSE-MONO and MMSE-
POLY groups, there are more patients with a decreasing cognition
compared to the ones with stable or increasing behavior in HVL

groups. As can be seen in Table 3, the number of patients with
increasing cognition computed by PReP-AD-HVL is the largest for
HVL-MONO (15 out of 80 patients) and HVL-POLY (6 out of 63
patients) groups compared to HVL-NT (3 out of 175 patients),
which is most likely as a result of the drug therapy.

Error rate distributions computed for the PReP-AD-HVL results
for months 6 and 12 for patients from HVL-NT, HVL-MONO and
HVL-POLY groups are given in Fig. 4. The statistics calculated
from boxplot graphs, and the mean and standard deviation values
are given in Table 5. We observe in Table 5 that HVL-NT group er-
ror rates are smaller than those for therapy groups. This is because
variation in disease progression for patients without therapy is the
smallest (i.e., disease progression results are more similar). The
larger range of volume measurements (i.e., approximately 1,500 -
3,000 mm3) compared to the smaller scale of MMSE scores (i.e., 0
to 30 points) contribute to smaller HVL group errors.

For selected six patients representing stable and decreasing
cognition in each group, disease progression results for PReP-AD-
HVL are shown in the third and fourth columns of Fig. 5, where the
computed results are in blue and the volumes reported in ADNI in
carmine. For patients 128-S-0770 and 137-S-0800 from HVL-
NT, the average error rates are calculated as 2.37% and 3.74%,
respectively. For HVL-MONO, the error is 1.66% for 027-S-0644
and 2.42% for 073-S-0746. It is 2.07% for 037-S-0501 and
0.72% for 027-S-0408, both from HVL-POLY group.

5.3 Error Rate Analysis

5.3.1 Cumulative Distribution of Error Rates

To examine the accuracy of AD progression results from PReP-AD

methods, we generate cumulative distribution functions (CDFs) of
LOOCV error rates. For a given cut-off error rate of ε , fractional
form of CDF Fc(ε) is Fc(ε) =∑

ε
u=0 Pr(u), where Pr(u) is the prob-

ability of error rate u. Cumulative Weibull distribution function
Wc(ε|λ ,ω), an approximation for fractional form of a cumulative
distribution, is Wc(ε|λ ,ω) = 1− e−(

ε

λ
)ω

, where ω is the shape
parameter and λ is of scale (i.e., dispersion of probability distribu-
tion) [47]. A Weibull curve similar to a fractional function implies
the significance of empirical observations as they fit into a normal
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Fig. 4: LOOCV errors computed for PReP-AD-MMSE results (months 12 to 60), and for PReP-AD-HVL results (months 6 and 12)

Fig. 5: Examples of AD progress computed by PReP-AD and reported in ADNI with average errors of 3.34% for 114-S-1118, 8.15%
for 018-S-2133, 2.37% for 128-S-0770, 3.74% for 137-S-0800, 4.84% for 014-S-0563, 8.13% for 003-S-1057, 1.66% for 027-S-
0644, 2.42% for 073-S-0746, 3.49% for 011-S-2274, 8.64% for 011-S-1080, 2.07% for 037-S-0501, and 0.72% for 027-S-0408
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Fig. 6: Fractional cumulative distribution and Weibull approximations of LOOCV error rates: month 12 (left pane) and month 36 (mid pane) of all MMSE groups,
and month 12 (right pane) of all HVL groups

Fig. 7: LOOCV errors calculated using distinct number of randomly selected AD genes for MMSE groups (left pane), and for HVL groups (mid pane); LOOCV
errors calculated for distinct number of randomly selected AD patients from all MMSE groups and from all HVL groups (right pane)

distribution. Fractional and Weibull distributions of LOOCV errors
for PREP-AD-HVL for selected time points are in Fig. 6.

For MMSE groups, in month 12, we observe a sharp increase
in cumulative probability distributions for all patient groups,
implying that a small error rate is obtained with a high probability.
For example, the probability of an error rate of less than 10% is
greater than 0.9 for all groups. The increase in error distribution
functions for PReP-AD-MMSE results at month 36 is less sharp
for the therapy groups compared to MMSE-NT group.Probability
for obtaining a cut-off error of 10% for MMSE-NT group is 0.9,
and slightly greater than 15% for MMSE-MONO and MMSE-POLY

groups. The CDFs for PReP-AD-HVL results indicates low error
rates since 90% of the results are with a cut-off error rate of
approximately 5% for all groups.We also observe that the increase
in distribution functions is more pronounced for the non-therapy
group, which indicates smaller error rates because of similarity in
disease progression for patients not receiving drug therapy.

5.3.2 Resampling for Error Analysis
To evaluate the effect of the number of genes on error rates, we
rerun the analysis using 20, 25, 30, 35 and 40 randomly selected
AD genes for all patients in each group. The average LOOCV error
rates with the standard deviation, where each case is run 100 times,
are illustrated on the left and middle panes of Fig. 7. For example,
the errors calculated for 175 patients in HVL-NT are shown in
blue square-shaped markers in the mid pane of Fig. 7 (obtained by
175×100×5 = 87,500 runs). The total number of runs to study
the effect of the number of AD genes on error is 293,000.

For MMSE-NT and MMSE-POLY groups, the average error
increases for a larger number of AD genes. The average errors of

MMSE-MONO group are close to each other for different number of
genes. We obtain a decreasing trend for HVL-NT group, while it is
stable for HVL-MONO, and increases for HVL-POLY as the number
of AD genes increases. The changes in average errors is a result
of the number of patients and the variance of disease progression
in a group. For example, having 175 patients in HVL-NT results
in a decreasing trend in average errors, while the average error
increases as the number of genes increases for 115 patients in
MMSE-NT. Similarly, while average errors are similar for MMSE-
MONO, it has an increasing trend for MMSE-POLY, most likely
because of the larger variance in progression results for MMSE-
POLY patients. The standard deviation is smaller for MMSE groups
(except for MMSE-POLY) compared to those of HVL groups. This
difference is due to having volume measurements only at months 6
and 12, while collecting MMSE scores at five distinct time points in
a 60-month period. A larger deviation is obtained for POLY group
patients since their disease progression is with a larger variance.

We study the change in error rates for distinct number of
patients by using overdetermined systems of equations in PReP-
AD. We define two patient sets: a set of 260 patients from three
MMSE groups, and a second set of 360 patients from three HVL

groups. The average errors are calculated for randomly selected
80, 125, 170, 215 and 260 patients from MMSE set, and 80, 115,
150, 220, 290 and 360 patients from HVL set (100 runs for each
patient in each case). We have a total of 206,500 runs to analyze
error for distinct number of AD patients used in PReP-AD.

In the right pane of Fig. 7, the left and bottom axes show the
average error and the number of patients for MMSE set, whereas
they are scaled on the right and the top axes for HVL set. For
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MMSE patients, the error exponentially decreases as the number of
patients increases. For HVL set, a similar characteristic is observed
until the number of patients is larger than 150 (with a small
increase after that). This difference can be due to a larger number
of HVL patients and only from month 12, whereas it is from a 60
month period for MMSE set. For both MMSE and HVL sets, the
deviation decreases as the number of patients increases.

Consistent error rates for variances of input data points out the
efficacy of PReP-AD methods in computing disease progression.

6 STATISTICAL SIGNIFICANCE

Correlation among the AD related genes is examined with weight-
ed gene co-expression network (WGCN) [48], a non-directed
graph, where each node corresponds to a gene and an edge
between two nodes is the pairwise correlation between the expres-
sions of those two genes. An edge in WGCN is placed between
two nodes if their correlation is more than a given threshold
value. A WGCN can also be presented as an adjacency matrix
W, where an element wi j is the pairwise correlation between
expressions of genes i and j. Matrix W is symmetric and each
element wi j ∈ [−1,1]. A clique is a subgraph of WGCN of which all
nodes are connected to each other [28]. It consists of genes whose
pairwise correlations of expressions are greater than a threshold.
Many algorithms can be used to construct maximal clique of an
adjacency matrix (see for example [49]).

We construct an adjacency matrix using expressions of AD

related genes, and additional matrices whose elements are pairwise
correlations of randomly selected gene expressions from ADNI

database. We show that AD related genes form larger cliques
compared to the randomly chosen ones and that the number of
cliques formed using AD genes is smaller than those by random
genes. For this comparison, we use 51 AD related and 51 randomly
chosen genes out of 20,062 in the database, and repeat this process
10,000 times. In Fig. 8, CDFs of the total number of cliques in
adjacency matrices for AD related and randomly selected genes
are shown. The dotted lines in Fig. 8 represent the deviation
among 10,000 random runs, where the lower and upper bounds
are calculated as (µ ±σ) for a mean value of µ and a standard
deviation of σ . The average of cumulative distributions for random
genes is marked with a continuous blue line, and the distribution
for AD genes in yellow. The threshold is selected as the correlation
value that results in the maximum difference of CDF results. The
difference between the CDFs for AD related and randomly chosen
genes shown in Fig. 8 implies a relationship among the AD genes.

For threshold value of 0.13, obtained by the maximum differ-
ence between CDFs (vertical dotted red line in Fig. 8), the total
number of cliques is 691 with an average clique size of 10.59 for
AD genes. However, for 10,000 sets of random genes, the average
clique size is 6.69. p-value is obtained as 0.0036 for the average
clique size for AD genes, which implies that AD related genes build
bigger cliques since they are more interrelated with each other.

For statistical significance of PReP-AD results, we compute
genetic accordance matrix AAD using randomly chosen genes.
Since the magnitude of a weight coefficient in AAD represents
the impact of a gene on disease progression, the deviation among
coefficients is an indicator of significance. We first calculate the
standard deviation among the AAD coefficients using AD-related
genes for the six patient groups. Then we repeat this process with
randomly selected genes by computing AAD for 1,000 times for
each patient group to obtain the standard deviation of coefficient

Fig. 8: CDFs of adjacency matrices for AD genes and 10,000 sets of
randomly selected genes are given with upper and lower bounds of
CDFs of random runs and the maximum difference between curves

values. We calculated the p-values for MMSE-NT, MMSE-MONO

and MMSE-POLY as 0.0315, 0.0245 and 0.0288, respectively.
For HVL-NT, HVL-MONO and HVL-POLY, they are calculated as
0.0239, 0.0440 and 0.0173 respectively. These relatively small p-
values (p ≤ 0.05) point out the significance of using AD related
genes in computation of AD progression by PReP-AD methods.

We utilized supercomputers at the College of Staten Island of
the CUNY for error analysis and statistical significance.

7 DISCUSSION

The results in Sec. 5 show that PReP-AD methods compute a
decrease in cognition for a larger percentage of patients in therapy
groups. Since therapy were typically administered to the patients
with already worsening conditions, a decreasing cognition can be
expected. Table 3 row titled Increasing Disease Progress lists
the number of patients with improved cognition, which may be
attributed to a positive response to drug therapy.

Distribution of LOOCV error rates for PReP-AD results (box-
plots in Fig. 4 and CDFs in Fig. 6) are presented in Sec. 5
together with their statistics (Tables 4 and 5). We observe from
Fig. 4 that the errors in results for both PReP-AD methods are
greater for therapy groups. This difference in error between the
no-therapy and therapy groups is also apparent in their CDFs.
As can be seen in Table 3, compared to therapy groups, there
are more patients with stable progression in no-therapy groups.
Therefore, a larger deviation among training set of patients for
therapy groups is typical, which may be the reason for larger
errors in therapy group computations. Moreover, having more
patients in no-therapy groups may account for the smaller error
rates obtained in the results. The error rates for PReP-AD increase
with time for all patient groups, most likely because fewer patients
continued to have follow-up measurements of their MMSE scores
and hippocampal volumes at the later stages of their disease.

In Sec. 6, p-values are calculated for statistical significance of
using AD related genes and for PReP-AD results. Small p-values
(p ≤ 0.05) indicate that AD related genes can be effectively used
in our PReP-AD methods to compute disease progression. Error
distribution graphs and the statistical significance computed for
AD genes and PReP-AD methods imply that AI based techniques
may be useful to compute progression of AD. An improvement
in efficiency of drug therapies is expected by computing gene
expression based progression results for different drug therapies.
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8 CONCLUDING REMARKS

Personalized relevance parameterization methods are built based
on AI techniques to compute disease progression at MCI stage
of AD by evaluating gene expression values, MMSE scores and
hippocampal volume loss over time. We define six patient groups
to evaluate pharmacological therapy effects on disease progres-
sion based on their clinical measurements and administered drug
therapy. Average LOOCV error rates are less than 8% in PReP-AD-
MMSE results for a 60 month period and 3% in PReP-AD-HVL

for 12 months. Statistical significance is evaluated for using AD

related genes (p = 0.003) in PReP-AD methods based on clinical
data and gene expressions (p < 0.05 for all patient groups).

Relatively small average for LOOCV errors and the correspond-
ing p-values are encouraging to build AI methods based on gene
expressions and clinical measurements, such as MMSE scores and
MRI scans for hippocampal atrophy to support clinical studies
toward pharmacologic therapy decisions at early stages of AD.
We plan to extend our research to compute AD progression and
drug efficacy with additional clinical biomarkers.
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